# A Space-Time Multigrid Method for Space-Time Finite-Element Discretizations SIAM CSE 2025, Fort Worth, Texas, U.S.

Peter Munch<sup>†</sup>, Nils Margenberg<sup>‡</sup>

<sup>†</sup>Institute of Mathematics, Technical University of Berlin, Germany <sup>‡</sup>Chair of Numerical Mathematics, Helmut Schmidt University Hamburg, Germany

March 7, 2025

# Part 1: Introduction

## (Tensor-product) space-time FEM

Idea: time-dependent PDE

- space: standard continuous Lagrange finite element
- time: use DG (dG(k)) or FEM (cGP(k))

Advantages:

- ► variational time discretization → natural integration with the variational space discretization and natural capture of coupled problems and nonlinearities
- advantageous for duality and goal-oriented adaptivity in space and time [Schmich and Vexler '08, Bause et al. '21, Besier & Rannacher 2012, Roth et al. 2023]
- unified approach to stability and error analysis [Matthies and Schieweck '11]
- Solves multiple time steps at once → relation to "parallel in time" algorithms [Gander '15, Ong and Schroder '20, Falgout et al. '14, '17]

- heat equation
  - $\partial_t u \nabla \cdot (\rho \nabla u) = f$

wave equations

$$\partial_t u - v = 0, \quad \partial_t v - \nabla \cdot (\rho \nabla u) = f$$

- convection-diffusion-reaction equation  $\partial_t u - \nabla \cdot (\varepsilon \nabla u) + b \cdot \nabla u + \alpha u = f$
- Stokes equations
  - $\partial_t \mathbf{v} \mathbf{v} \Delta \mathbf{v} + \nabla \mathbf{p} = \mathbf{f}, \quad \nabla \cdot \mathbf{v} = \mathbf{0}$
- Navier–Stokes equations (WIP)

$$\partial_t \boldsymbol{u} - \boldsymbol{v} \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f}, \quad \nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$

heat equation

 $\partial_t u - \nabla \cdot (\rho \nabla u) = f$ 

wave equations

$$\partial_t u - v = 0, \quad \partial_t v - \nabla \cdot (\rho \nabla u) = f$$

- convection-diffusion-reaction equation  $\partial_t u - \nabla \cdot (\varepsilon \nabla u) + b \cdot \nabla u + \alpha u = f$
- Stokes equations
  - $\partial_t \mathbf{v} \mathbf{v} \Delta \mathbf{v} + \nabla \mathbf{p} = \mathbf{f}, \quad \nabla \cdot \mathbf{v} = \mathbf{0}$
- Navier–Stokes equations (WIP)

$$\partial_t \boldsymbol{u} - \boldsymbol{v} \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f}, \quad \nabla \cdot \boldsymbol{u} = 0$$

heat equation

 $\partial_t u - \nabla \cdot (\rho \nabla u) = f$ 

- convection-diffusion-reaction equation  $\partial_t u - \nabla \cdot (\varepsilon \nabla u) + b \cdot \nabla u + \alpha u = f$
- Stokes equations
  - $\partial_t \mathbf{v} \mathbf{v} \Delta \mathbf{v} + \nabla \mathbf{p} = \mathbf{f}, \quad \nabla \cdot \mathbf{v} = \mathbf{0}$
- Navier–Stokes equations (WIP)

$$\partial_t \boldsymbol{u} - \boldsymbol{v} \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f}, \quad \nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$

wave equations

$$\partial_t u - v = 0, \quad \partial_t v - \nabla \cdot (\rho \nabla u) = f$$

## Table of content:

- 1. space-time multigrid
- 2. block preconditioning

heat equation

 $\partial_t u - \nabla \cdot (\rho \nabla u) = f$ 

- convection-diffusion-reaction equation  $\partial_t u - \nabla \cdot (\varepsilon \nabla u) + b \cdot \nabla u + \alpha u = f$
- Stokes equations

 $\partial_t \mathbf{v} - \mathbf{v} \Delta \mathbf{v} + \nabla \mathbf{p} = \mathbf{f}, \quad \nabla \cdot \mathbf{v} = \mathbf{0}$ 

Navier–Stokes equations (WIP)

 $\partial_t \boldsymbol{u} - \boldsymbol{v} \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f}, \quad \nabla \cdot \boldsymbol{u} =$ 

wave equations

$$\partial_t u - v = 0, \quad \partial_t v - \nabla \cdot (\rho \nabla u) = f$$

### Table of content:

- 1. space-time multigrid
- 2. block preconditioning

N. Margenberg and PM, "A space-time multigrid method for space-time finite element discretizations of parabolic and hyperbolic PDEs", submitted, 2024.

N. Margenberg, M. Bause, and PM, "An *hp* multigrid approach for tensor-product space-time finite element discretizations of the Stokes equations", submitted, 2025.

# Part 2: Solution procedures

#### Tensor-product space-time FEM

Idea: time-dependent PDE

- space: standard continuous Lagrange finite element
- time: use DG (dG(k)) or FEM (cGP(k))



#### Algebraic system for dG(k) discretization of the heat equation

Local algebraic system at *n*-th time step

$$\underbrace{(\boldsymbol{M}_{\tau}\otimes\boldsymbol{A}_{h}+\boldsymbol{A}_{\tau}\otimes\boldsymbol{M}_{h})}_{:=\boldsymbol{s}}\boldsymbol{u}_{n}=\boldsymbol{M}_{\tau}\otimes\boldsymbol{M}_{h}\boldsymbol{f}_{n}+\alpha\otimes\boldsymbol{M}_{h}\boldsymbol{u}_{n-1}^{N_{t}}$$

with  $(\mathbf{M}_{\tau})_{i,j} \coloneqq \tau \int_{\hat{l}} \hat{\xi}_{j}(\hat{t}) \hat{\xi}_{i}(\hat{t}) d\hat{t}$ ,  $(\mathbf{A}_{\tau})_{i,j} \coloneqq \int_{\hat{l}} \hat{\xi}'_{j}(\hat{t}) \hat{\xi}_{i}(\hat{t}) d\hat{t} + \hat{\xi}_{j}(0) \hat{\xi}_{i}(0)$ ,  $\alpha_{i} \coloneqq \hat{\xi}_{i}(0)$ . Multiple-time-steps system

Let  $\mathbf{B} := \mathbf{1}_{k+1} \otimes \alpha \otimes \mathbf{M}_h$ , then we collect consecutive time steps  $n_1, \ldots, n_c$ 

$$\begin{pmatrix} \mathbf{S} & & & \\ -\mathbf{B} & \mathbf{S} & & \\ & \ddots & \ddots & \\ & & -\mathbf{B} & \mathbf{S} \\ & & & -\mathbf{B} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{n_1} \\ \mathbf{u}_{n_2} \\ \vdots \\ \mathbf{u}_{n_c-1} \\ \mathbf{u}_{n_c} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_1} + \alpha \otimes \mathbf{M}_h \mathbf{u}_{n_1-1}^{N_t} \\ \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_2} \\ \vdots \\ \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_c-1} \\ \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_c} \end{pmatrix}$$

•

#### Algebraic system for cGP(k) discretization of the heat equation

#### Local algebraic system at *n*-th time step

$$\underbrace{(\mathbf{M}_{\tau}\otimes\mathbf{A}_{h}+\mathbf{A}_{\tau}\otimes\mathbf{M}_{h})}_{:=\mathbf{S}}\mathbf{u}_{n}=\mathbf{M}_{\tau}\otimes\mathbf{M}_{h}\mathbf{f}_{n}-\beta\otimes\mathbf{M}_{h}\mathbf{f}_{n-1}^{N_{t}}+\underbrace{(\beta\otimes\mathbf{A}_{h}+\alpha\otimes\mathbf{M}_{h})}_{:=\mathbf{b}}\mathbf{u}_{n-1}^{N_{t}}$$

with 
$$(\boldsymbol{M}_{\tau})_{i,j-1} := \tau \int_{\hat{I}} \hat{\xi}_{j}(\hat{t}) \hat{\psi}_{i}(\hat{t}) d\hat{t}, \quad (\boldsymbol{A}_{\tau})_{i,j-1} := \int_{\hat{I}} \hat{\xi}_{j}'(\hat{t}) \hat{\psi}_{i}(\hat{t}) d\hat{t}, \\ \boldsymbol{\beta}_{i} := \tau \int_{\hat{I}} \hat{\xi}_{1}(\hat{t}) \hat{\psi}_{i}(\hat{t}) d\hat{t}, \quad \boldsymbol{\alpha}_{i} := \int_{\hat{I}} \hat{\xi}_{1}'(\hat{t}) \hat{\psi}_{i}(\hat{t}) d\hat{t}, \quad i = 1, \dots, k, \ j = 2, \dots, k+1$$

#### Multiple-time-steps system

Let  $\boldsymbol{B} \coloneqq \mathbf{1}_k \otimes \boldsymbol{b}$ , then we collect consecutive time steps  $n_1, \ldots, n_c$ 

$$\begin{pmatrix} \mathbf{S} & & & \\ -\mathbf{B} & \mathbf{S} & & \\ & \ddots & \ddots & & \\ & & -\mathbf{B} & \mathbf{S} \\ & & & -\mathbf{B} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{n_1} \\ \mathbf{u}_{n_2} \\ \vdots \\ \mathbf{u}_{n_c-1} \\ \mathbf{u}_{n_c} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_1} - \beta \otimes \mathbf{M}_h \mathbf{f}_{n_1-1}^{N_t} + \mathbf{b} \otimes \mathbf{u}_{n_1-1}^{N_t} \\ \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_2} - \beta \otimes \mathbf{M}_h \mathbf{f}_{n_1}^{N_t} \\ \vdots \\ \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_c-1} - \beta \otimes \mathbf{M}_h \mathbf{f}_{n_c-2}^{N_t} \\ \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f}_{n_c} - \beta \otimes \mathbf{M}_h \mathbf{f}_{n_c-1}^{N_t} \end{pmatrix}$$

.

# Space-time multigrid

To solve

$$\begin{pmatrix} \mathbf{S} & & & \\ -\mathbf{B} & \mathbf{S} & & \\ & \ddots & \ddots & \\ & & -\mathbf{B} & \mathbf{S} \\ & & & -\mathbf{B} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{n_1} \\ \mathbf{u}_{n_2} \\ \vdots \\ \mathbf{u}_{n_c-1} \\ \mathbf{u}_{n_c} \end{pmatrix} = \begin{pmatrix} \dots \\ \dots \\ \vdots \\ \dots \\ \dots \end{pmatrix} .$$

we use GMRES with space-time multigrid [Hackbusch '85, Gander and Neumüller '16]:

- *h* and *p*-multigrid both in space and time
- first coarsen p and then h
- simultaneously coarsen in space and time
- smoother: additive Schwarz (element-centric patches)
  - $\rightarrow$  full matrices with  $O(kp^d)$  rows/columns

# Space-time multigrid



#### To solve



we use GMRES with space-time multigrid [Hackbusch '85, Gander and Neumüller '16]:

- h- and p-multigrid both in space and time
- first coarsen p and then h
- simultaneously coarsen in space and time
- smoother: additive Schwarz (element-centric patches)
  - $\rightarrow$  full matrices with  $O(kp^d)$  rows/columns

# Space-time multigrid



#### To solve



we use GMRES with space-time multigrid [Hackbusch '85, Gander and Neumüller '16]:

- h- and p-multigrid both in space and time
- first coarsen p and then h
- simultaneously coarsen in space and time
- ► smoother: additive Schwarz (element-centric patches) → full matrices with  $O(kp^d)$  rows/columns

#### Next:

- 1. evaluation of S
- 2. transfer operator

#### Space-time multigrid: Matrix-free operator evaluation

Operator  $\mathbf{S} = (\mathbf{M}_{\tau} \otimes \mathbf{A}_{h} + \mathbf{A}_{\tau} \otimes \mathbf{M}_{h})$  is never assembled but directly applied to  $\mathbf{u}_{n}$ :

 $\mathbf{v} = \mathbf{S}\mathbf{u} = (\mathbf{M}_{\tau} \otimes \mathbf{I}_h)(\mathbf{I}_{\tau} \otimes \mathbf{A}_h)\mathbf{u} + (\mathbf{A}_{\tau} \otimes \mathbf{I}_h)(\mathbf{I}_{\tau} \otimes \mathbf{M}_h)\mathbf{u}$ 

implying two steps:

- 1. apply  $A_h/M_h$  to each block
- 2. compute linear combination using  $A_{\tau}/M_{\tau}$ .

 $\triangleright (\mathbf{I}_{\tau} \otimes \mathbf{A}_{h}), (\mathbf{I}_{\tau} \otimes \mathbf{M}_{h})$  $\triangleright (\mathbf{M}_{\tau} \otimes \mathbf{I}_{h}), (\mathbf{A}_{\tau} \otimes \mathbf{I}_{h})$ 

Furthermore: application of  $A_h/M_h$  is efficiently implemented in a matrix-free way [Kronbichler & Kormann, '12].

### Space-time multigrid: transfer operators

Heart of deal.II's multigrid infrastructure: transfer operators



also working for multivectors:  $\boldsymbol{u}^{(f)} = (\boldsymbol{I}_{\tau} \otimes \boldsymbol{P}_h) \boldsymbol{u}^{(c)}$ 

#### Time transfer:

prolongation as operation on multivectors

$$\boldsymbol{u}^{(f)} = (\boldsymbol{P}_{\tau} \otimes \boldsymbol{I}_h) \boldsymbol{u}^{(c)}$$

...  $L^2$  projection;  $P_{\tau}$ : different for geometric/polynomial coarsening

restriction as adjoint of prolongation operator

# Part 3: Application: heat equation

#### **Numerical experiments**

#### Test setup

- ▶ cG(p)-cGP(k) and cG(p)-dG(k) methods,  $p = k, k \in \{2, 3, 4, 5\}$
- heat equation with thermal diffusivity  $\rho = 1$
- **•** prescribed solution with f = 2

 $u(\mathbf{x}, t) = \sin(2\pi f t) \sin(2\pi f x) \sin(2\pi f y) \sin(2\pi f z)$ 

Study the errors  $e_u = u(\mathbf{x}, t) - u_{\tau,h}(\mathbf{x}, t)$  in the norms given by

$$\|e_{u}\|_{L^{\infty}(L^{\infty})} = \max_{t \in I} \left( \sup_{\Omega} \|e_{u}\|_{\infty} \right), \quad \|e_{u}\|_{L^{2}(L^{2})} = \left( \int_{I} \int_{\Omega} |e_{u}|^{2} \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \right)^{\frac{1}{2}}$$

•



Figure: Computed errors for the displacement *u* for different polynomial orders p = k for CG(p) - DG(k) discretizations of the heat equation. The expected orders of convergence k + 1, represented by the triangles, match with the experimental orders.

|                 | cG(p) | ) – dG(k) | ) single ti | me step |        | cG(p) - cGP(k) single time step |      |       |       |        |        |  |
|-----------------|-------|-----------|-------------|---------|--------|---------------------------------|------|-------|-------|--------|--------|--|
| $k \setminus r$ | 2     | 3         | 4           | 5       | 6      | $k \setminus r$                 | 2    | 3     | 4     | 5      | 6      |  |
| 2               | 9.0   | 9.75      | 9.00        | 8.875   | 8.656  | 2                               | 9.0  | 9.75  | 9.25  | 8.875  | 8.688  |  |
| 3               | 12.0  | 11.75     | 10.88       | 10.188  | 10.563 | 3                               | 12.0 | 12.00 | 10.88 | 10.188 | 10.594 |  |
| 4               | 14.5  | 14.00     | 12.88       | 11.813  | 11.781 | 4                               | 14.5 | 14.00 | 12.88 | 11.875 | 11.781 |  |

| cG(p) - dG(k) single time step     |                                     |                                 |                                |                                  |                           |   |                           | cG(p) - cGP(k) single time step |                                |                                  |                                    |                           |  |  |
|------------------------------------|-------------------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------|---|---------------------------|---------------------------------|--------------------------------|----------------------------------|------------------------------------|---------------------------|--|--|
| $k \setminus r$                    | 2                                   | 3                               | 4                              | 5                                | 6                         |   | $k \setminus r$           | 2                               | 3                              | 4                                | 5                                  | 6                         |  |  |
| 2                                  | 9.0                                 | 9.75                            | 9.00                           | 8.875                            | 8.656                     |   | 2                         | 9.0                             | 9.75                           | 9.25                             | 8.875                              | 8.688                     |  |  |
| 3                                  | 12.0                                | 11.75                           | 10.88                          | 10.188                           | 10.563                    |   | 3                         | 12.0                            | 12.00                          | 10.88                            | 10.188                             | 10.594                    |  |  |
| 4                                  | 14.5                                | 14.00                           | 12.88                          | 11.813                           | 11.781                    |   | 4                         | 14.5                            | 14.00                          | 12.88                            | 11.875                             | 11.781                    |  |  |
| cG(p) - dG(k) 2 time steps at once |                                     |                                 |                                |                                  |                           |   |                           |                                 |                                |                                  |                                    |                           |  |  |
|                                    | cG(p) –                             | - dG(k) 2                       | time ste                       | ps at once                       | e                         |   | С                         | :G(p) -                         | dGP(k)                         | 2 time ste                       | eps at onc                         | e                         |  |  |
| $k \setminus r$                    | cG(p) –<br>2                        | - <i>dG</i> ( <i>k</i> ) 2<br>3 | time ste<br>4                  | ps at once<br>5                  | e<br>6                    | - | $k \setminus r$           | :G(p)<br>2                      | <i>dGP(k)</i> :<br>3           | 2 time ste<br>4                  | eps at once<br>5                   | e<br>6                    |  |  |
| $\frac{k \setminus r}{2}$          | <i>cG(p)</i> –<br>2<br>10.0         | dG(k) 2<br>3<br>10.0            | time ste<br>4<br>10.0          | ps at once<br>5<br>9.60          | e 6<br>9.234              | - | $k \setminus r$           | eG(p) -<br>2<br>10.0            | dGP(k)<br>3<br>10.0            | 2 time ste<br>4<br>10.0          | eps at onco<br>5<br>9.75           | e<br>6<br>9.484           |  |  |
| $\frac{k \setminus r}{2}$          | <i>cG(p)</i> –<br>2<br>10.0<br>12.0 | dG(k) 2<br>3<br>10.0<br>12.38   | time ste<br>4<br>10.0<br>11.75 | ps at once<br>5<br>9.60<br>10.88 | e<br>6<br>9.234<br>11.484 | - | $k \setminus r$<br>2<br>3 | €G(p) —<br>2<br>10.0<br>12.8    | dGP(k) :<br>3<br>10.0<br>13.00 | 2 time ste<br>4<br>10.0<br>11.75 | eps at once<br>5<br>9.75<br>10.875 | e<br>6<br>9.484<br>11.484 |  |  |



### Outlook

N. Margenberg and PM, "A space-time multigrid method for space-time finite element discretizations of parabolic and hyperbolic PDEs", submitted, 2024.

- deformed meshes and heterogeneous coefficients
- wave equation:

$$\mathbf{v}_n = \mathbf{M}_{\tau}^{-1} \mathbf{A}_{\tau} \mathbf{u}_n - \mathbf{M}_{\tau}^{-1} \alpha \mathbf{u}_{n-1}^{N_t},$$
  
$$\underbrace{(\mathbf{M}_{\tau} \otimes \mathbf{A}_h + \mathbf{A}_{\tau} \mathbf{M}_{\tau}^{-1} \mathbf{A}_{\tau} \otimes \mathbf{M}_h)}_{:=\mathbf{S}} \mathbf{u}_n = \mathbf{M}_{\tau} \otimes \mathbf{M}_h \mathbf{f} + \alpha \otimes \mathbf{M}_h \mathbf{v}_{n-1}^{N_t} + \underbrace{\mathbf{A}_{\tau} \mathbf{M}_{\tau}^{-1} \alpha \otimes \mathbf{M}_h}_{:=\mathbf{D}} \mathbf{u}_{n-1}^{N_t}.$$

$$\mathbf{v}_{n} = \mathbf{M}_{\tau}^{-1} \mathbf{A}_{\tau} \mathbf{u}_{n} - \mathbf{M}_{\tau}^{-1} \alpha \mathbf{u}_{n-1}^{N_{t}} + \mathbf{M}_{\tau}^{-1} \beta \mathbf{v}_{n-1}^{N_{t}}$$

$$\underbrace{(\mathbf{M}_{\tau} \otimes \mathbf{A}_{h} + \mathbf{A}_{\tau} \mathbf{M}_{\tau}^{-1} \mathbf{A}_{\tau} \otimes \mathbf{M}_{h})}_{:=\mathbf{S}} \mathbf{u}_{n} = \mathbf{M}_{\tau} \otimes \mathbf{M}_{h} \mathbf{f} - \beta \otimes \mathbf{M}_{h} \mathbf{f}_{n-1}^{N_{t}}$$

$$+ (\beta \otimes \mathbf{A}_{h} + \mathbf{A}_{\tau} \mathbf{M}_{\tau}^{-1} \alpha \otimes \mathbf{M}_{h}) \mathbf{u}_{n-1}^{N_{t}} + (\alpha - \mathbf{A}_{\tau} \mathbf{M}_{\tau}^{-1} \beta) \otimes \mathbf{M}_{h} \mathbf{v}_{n-1}^{N_{t}}$$

scaling studies with 20,556 MPI ranks

# Part 4: Application: Stokes equations

#### **Solution procedure**

dG(*k*) space-time formulation: Find  $(V_n, P_n) \in \mathbf{R}^{(k+1)(M^{v}+M^{p})}$  such that

$$\begin{pmatrix} \boldsymbol{K}_n^{\tau} \otimes \boldsymbol{M}_h + \boldsymbol{M}_n^{\tau} \otimes \boldsymbol{A}_h & \boldsymbol{M}_n^{\tau} \otimes \boldsymbol{B}_h^{\top} \\ \boldsymbol{M}_n^{\tau} \otimes \boldsymbol{B}_h & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{V}_n \\ \boldsymbol{P}_n \end{pmatrix} = \begin{pmatrix} \boldsymbol{F}_n \\ \boldsymbol{0} \end{pmatrix} + \boldsymbol{C}_n^{\tau} \otimes \begin{pmatrix} \boldsymbol{M}_h \\ \boldsymbol{0} \end{pmatrix} \boldsymbol{V}_{n-1} \, .$$

The global discrete solution spaces are defined by the tensor products

$$oldsymbol{H}_{ au,h}^{oldsymbol{v}}=Y^k_{ au}(I)\otimesoldsymbol{V}_h^{r+1}(\Omega)\,,\quad H^p_{ au,h}=Y^k_{ au}(I)\otimes Q^r_h(\Omega)\,,$$

with

$$\begin{split} \boldsymbol{V}_{h}^{r+1}(\Omega) &\coloneqq \{\boldsymbol{v}_{h} \in \boldsymbol{V} : \boldsymbol{v}_{h|K} \in \mathbb{Q}_{k+1}^{d}(K) \text{ for all } K \in T_{h}\} \cap \boldsymbol{H}_{0}^{1}(\Omega), \\ \boldsymbol{Q}_{h}^{k}(\Omega) &\coloneqq \{\boldsymbol{q}_{h} \in \boldsymbol{Q} : \boldsymbol{q}_{h|K} \in \mathbb{P}_{r}^{\mathsf{disc}}(K) \text{ for all } K \in T_{h}\}. \end{split}$$

<u>Preconditioner:</u> space-time multigrid with additive Vanka smoother (element-centric patches consisting of v and p)

#### **Numerical experiments**

Model problem on the space-time domain  $\Omega \times I = [0, 1]^2 \times [0, 1]$  with prescribed solution given for velocity  $\mathbf{v} : \Omega \times I \to \mathbb{R}^2$  and pressure  $p : \Omega \times I \to \mathbb{R}$  by

$$\mathbf{v}(\mathbf{x}, t) = \sin(t) \begin{pmatrix} \sin^2(\pi x) \sin(\pi y) \cos(\pi y) \\ \sin(\pi x) \cos(\pi x) \sin^2(\pi y) \end{pmatrix},$$
  
$$p(\mathbf{x}, t) = \sin(t) \sin(\pi x) \cos(\pi x) \sin(\pi y) \cos(\pi y).$$

We set the kinematic viscosity to v = 0.1 and choose the external force **f** appropriately.

Table: Number of GMRES iterations until convergence for different polynomial degrees *r* and numbers of refinements *r* with  $\mathbb{Q}_{k+1}^2/\mathbb{P}_k^{\text{disc}}$  discretization of the Stokes system.

|                 | h-multigrid in space |      |      |      |      |      |   | hp STMG             |      |      |      |      |      |      |  |
|-----------------|----------------------|------|------|------|------|------|---|---------------------|------|------|------|------|------|------|--|
| $r \setminus k$ | 1                    | 2    | 3    | 4    | 5    | 6    | 1 | $h \in \mathcal{K}$ | 1    | 2    | 3    | 4    | 5    | 6    |  |
| 2               | 14.0                 | 15.0 | 15.0 | 14.0 | 13.0 | 10.6 |   | 2                   | 14.0 | 15.0 | 15.0 | 14.0 | 13.0 | 10.6 |  |
| 3               | 19.0                 | 17.9 | 18.9 | 18.3 | 16.4 | 14.0 |   | 3                   | 19.8 | 15.9 | 16.0 | 15.0 | 13.7 | 11.0 |  |
| 4               | 24.0                 | 26.8 | 24.7 | 24.6 | 21.4 | 18.4 |   | 4                   | 27.8 | 23.0 | 22.9 | 21.9 | 19.0 | 15.5 |  |
| 5               | 26.0                 | 26.4 | 28.8 | 27.7 | 24.7 | 21.9 |   | 5                   | 31.0 | 26.4 | 26.6 | 22.8 | 18.7 | 14.9 |  |
| 6               | 35.0                 | 33.9 | 34.6 | 30.9 | 29.6 | 26.9 |   | 6                   | 45.0 | 36.1 | 36.7 | 29.0 | 23.1 | 17.2 |  |
| 7               | 40.0                 | 38.8 | 39.6 | 36.7 | 34.5 | 31.9 |   | 7                   | 50.8 | 43.8 | 42.8 | 32.8 | 25.6 | 19.6 |  |

## Outlook

N. Margenberg, M. Bause, and PM, "An hp multigrid approach for tensor-product space-time finite element discretizations of the Stokes equations", submitted, 2025.



scaling studies with 13,824 MPI ranks

# Part 5: Block preconditioners

## **Motivation**

- space-time multigrid is a monolithic and robust approach, however, needs expensive smoothers (here: element-centric additive patch smoothers)
- efficient implementation of patch smoothers: still open research; examples:
  - Pazner and Persson '17  $\rightarrow$  SVD-based tensor-product preconditioner
  - **b** Brubeck and Farrell '21  $\rightarrow$  vertex-star relaxation
- ▶ alternative: block preconditioning  $\rightarrow$  use cheaper smoothers on blocks; examples:
  - for space-time FEM: Danieli et al. '22
  - ▶ for IRK: Southworth et al. '22, Axelsson et al. '20, '24, Dravis et al.'24, PM et al.'24

stage-parallel IRK

#### Stage-parallel implicit Runge–Kutta preconditioning (cont.)

PM, I. Dravins, M. Kronbichler, and M. Neytcheva, "Stage-parallel fully implicit Runge-Kutta implementations with optimal multilevel preconditioners at the scaling limit", in SISC, 2022.

For a linear system of equations, IRK has the form:

.. Butcher tableau: 
$$\begin{array}{c|c} \boldsymbol{c}_Q & \boldsymbol{A}_Q \\ \hline & \boldsymbol{b}_Q^{\top} \end{array}$$

$$\mathbf{u}_{m+1} = \mathbf{u}_m + \tau \sum_{q=1}^{Q} b_q \mathbf{k}_q \quad \text{w.} \quad \underbrace{(A_Q^{-1} \otimes M + \tau \mathbb{I}_Q \otimes K)}_{A} \mathbf{k} = (A_Q^{-1} \otimes \mathbb{I}_n) \overline{\mathbf{g}} - (A_Q^{-1} \otimes K) (\mathbf{e}_Q \otimes \mathbf{u}_0)$$

Following Butcher [1976], A can be factorized, using  $A_Q^{-1} = S \wedge S^{-1}$ , and explicitly inverted:

$$A = (S \otimes \mathbb{I}_n)(\Lambda \otimes M + \tau \mathbb{I}_Q \otimes K)(S^{-1} \otimes \mathbb{I}_n) \quad A^{-1} = (S \otimes \mathbb{I}_n)(\Lambda \otimes M + \tau \mathbb{I}_Q \otimes K)^{-1}(S^{-1} \otimes \mathbb{I}_n).$$

Axelsson, Neytcheva [2020] proposed real-value preconditioner ( $LU = A_Q^{-1} \rightarrow L = \tilde{S}\tilde{\Lambda}\tilde{S}^{-1}$ ):

$$P^{-1} = (\tilde{S} \otimes \mathbb{I}_n) (\tilde{\Lambda} \otimes M + \tau \mathbb{I}_Q \otimes K)^{-1} (\tilde{S}^{-1} \otimes \mathbb{I}_n).$$

... Q stages can be solved in parallel! Helmholtz operator  $\rightarrow$  multigrid

# Stage-parallel implicit Runge–Kutta preconditioning (cont.)

Main results:

► for the first time shown: stage parallelism shifts the scaling limit



... clear speedup for  $\leq$  10k DoFs per process!

performance model: minimize lin. iterations performed in serial, speedup limited by Q

$$\sum_{1 \leq q \leq Q} N_Q^{\mathsf{IT}}$$
 vs.  $\max_{1 \leq q \leq Q} N_Q^{\mathsf{IT}}$ 

application also to advection/diffusion; extension to nonlinear equations?

#### Implicit Runge–Kutta methods vs. space-time FEM

• implicit Runge–Kutta method:  $\mathbf{u}_{m+1} = \mathbf{u}_m + \tau \sum_{q=1}^{Q} b_q \mathbf{k}_q$  with

$$(A_Q^{-1} \otimes M + \tau \mathbb{I}_Q \otimes K) \mathbf{k} = (A_Q^{-1} \otimes I_n) (\overline{\mathbf{g}} - \mathbf{e}_Q \otimes (K\mathbf{u}_0))$$

Space-time FEM with dG(k):  $\mathbf{u}_{m+1} = \mathbf{k}_Q$  with

$$\left| ( ilde{A}_Q^{-1} \otimes M + au \mathbb{I}_Q \otimes K) \mathbf{k} = au \overline{\mathbf{g}} + ilde{lpha} \otimes (M \mathbf{u}_0) 
ight|$$

and 
$$\widetilde{A}_{Q}^{-1}=M_{ au}^{-1}A_{ au}, \widetilde{lpha}=M_{ au}^{-1}lpha$$

**•** space-time FEM with cGP(k):  $\mathbf{u}_{m+1} = \mathbf{k}_Q$  with

#### **Observations:**

- system matrix: same structure
- different coefficients
- different rhs

$$\left| ( ilde{A}_Q^{-1} \otimes M + au \mathbb{I}_Q \otimes K) \mathbf{k} = au \overline{\mathbf{g}} - au \widetilde{eta} \otimes \overline{\mathbf{g}}_0 + ( au \widetilde{eta} \otimes K + \widetilde{lpha} \otimes M) \mathbf{u}_0 
ight|$$

and 
$$ilde{A}_Q^{-1} = M_{ au}^{-1}A_{ au}$$
,  $ilde{lpha} = M_{ au}^{-1}lpha$ , and  $ilde{eta} = M_{ au}^{-1}eta$ 

### **Numerical results**

2D setup (similar as above):

 $u(\mathbf{x},t) = \sin(2\pi ft)\sin(2\pi fx)\sin(2\pi fy)$ 

We set f = 1,  $\tau = 0.1$ , and run 10 time steps. Preconditioner on block: 1 V-cycle of geometric multigrid with Chebyshev smoother around point Jacobi.

Preliminary results:

| r | IRK(Q=2) | dG(k=2) | cGP(k=3) | r | IRK(Q=5) | dG(k=5) | cGP(k=6) |
|---|----------|---------|----------|---|----------|---------|----------|
| 4 | 4        | 4       | 4        | 3 | 7.9      | 7.9     | 7.9      |
| 5 | 4        | 4       | 4        | 4 | 8        | 8       | 8        |
| 6 | 4        | 4       | 4        | 5 | 8        | 8       | 8        |

Same number of iterations!

For complex variant, see: Werder et al. ['01], Banks et al. ['14]

# Part 6: Conclusions & Outlook

#### Conclusions

- space-time multigrid for space-time finite-element computations
  - matrix-free implementation
  - simple implementation with deal.II
  - smoother: additive Schwarz (element-centric patches)
  - robust but expensive
  - application: heat equation and Stokes equation
- ▶ alternative: block preconditioners → preliminary results

### Outlook

- efficient patch smoothers
- block preconditioning
- application: Navier–Stokes equations [Anselmann and Bause '23]

#### References

- Schmich, M. and Vexler, B., 2008. Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM Journal on Scientific Computing, 30(1), pp.369-393.
- Besier, M. and Rannacher, R., 2012. Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow. International Journal for Numerical Methods in Fluids, 70(9), pp.1139-1166.
- Roth, J., Thiele, J.P., Köcher, U. and Wick, T., 2024. Tensor-product space-time goal-oriented error control and adaptivity with partition-of-unity dual-weighted residuals for nonstationary flow problems. Computational Methods in Applied Mathematics, 24(1), pp.185-214.
- Bause, M., Bruchhäuser, M.P. and Köcher, U., 2021. Flexible goal-oriented adaptivity for higher-order space-time discretizations of transport problems with coupled flow. Computers & Mathematics with Applications, 91, pp.17-35.
- Matthies, G. and Schieweck, F., 2011. Higher order variational time discretizations for nonlinear systems of ordinary differential equations.
- Gander, M.J., 2015. 50 years of time parallel time integration. In Multiple Shooting and Time Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013 (pp. 69-113). Cham: Springer International Publishing.
- Ong, B.W. and Schroder, J.B., 2020. Applications of time parallelization. Computing and Visualization in Science, 23, pp.1-15.

## **References (cont.)**

- Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P. and Schroder, J.B., 2014. Parallel time integration with multigrid. SIAM Journal on Scientific Computing, 36(6), pp.C635-C661.
- Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B. and Vandewalle, S., 2017. Multigrid methods with space-time concurrency. Computing and Visualization in Science, 18, pp.123-143.
- Hackbusch, W., 2013. Multi-grid methods and applications (Vol. 4). Springer Science & Business Media.
- Gander, M.J. and Neumuller, M., 2016. Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM Journal on Scientific Computing, 38(4), pp.A2173-A2208.
- Clevenger, T.C., Heister, T., Kanschat, G. and Kronbichler, M., 2020. A flexible, parallel, adaptive geometric multigrid method for FEM. ACM Transactions on Mathematical Software (TOMS), 47(1), pp.1-27.
- Munch, P., Heister, T., Prieto Saavedra, L. and Kronbichler, M., 2023. Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations. ACM transactions on parallel computing, 10(1), pp.1-38.
- Feder, M., Heltai, L., Kronbichler, M. and Munch, P., 2024. Matrix-free implementation of the non-nested multigrid method. arXiv preprint arXiv:2412.10910.
- Pazner, W. and Persson, P.O., 2017. Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. Journal of Computational Physics, 335, pp.700-717. Brubeck, P.D. and Farrell, P.E., 2021. A scalable and robust vertex-star relaxation for high-order FEM. arXiv preprint arXiv:2107.14758.

## **References (cont.)**

- Danieli, F., Southworth, B.S. and Schroder, J.B., 2023. Space-Time Block Preconditioning for Incompressible Resistive Magnetohydrodynamics. arXiv preprint arXiv:2309.00768.
- Southworth, B.S., Krzysik, O., Pazner, W. and Sterck, H.D., 2022. Fast Solution of Fully Implicit Runge–Kutta and Discontinuous Galerkin in Time for Numerical PDEs, Part I: the Linear Setting. SIAM Journal on Scientific Computing, 44(1), pp.A416-A443.
- Axelsson, O. and Neytcheva, M., 2020. Numerical solution methods for implicit Runge-Kutta methods of arbitrarily high order. In Proceedings of the conference'Algoritmy (pp. 11-20). Axelsson, O., Dravins, I. and Neytcheva, M., 2024. Stage-parallel preconditioners for implicit Runge–Kutta methods of arbitrarily high order, linear problems. Numerical Linear Algebra with Applications, 31(1), p.e2532.
- Dravins, I., Serra-Capizzano, S. and Neytcheva, M., 2024. Spectral Analysis of Preconditioned Matrices Arising from Stage-Parallel Implicit Runge–Kutta Methods of Arbitrarily High Order. SIAM Journal on Matrix Analysis and Applications, 45(2), pp.1007-1034.
- Munch, P., Dravins, I., Kronbichler, M. and Neytcheva, M., 2024. Stage-parallel fully implicit Runge–Kutta implementations with optimal multilevel preconditioners at the scaling limit. SIAM Journal on Scientific Computing, 46(2), pp.S71-S96.
- Butcher, J.C., 1976. On the implementation of implicit Runge-Kutta methods. BIT Numerical Mathematics, 16(3), pp.237-240.

### **References (cont.)**

Anselmann, M. and Bause, M., 2023. A geometric multigrid method for space-time finite element discretizations of the Navier–Stokes equations and its application to 3d flow simulation. ACM Transactions on Mathematical Software, 49(1), pp.1-25.