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Part 1:

Motivation
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Motivation: chemical and process engineering

MixingMultiphase PR DNS

Granular flows

Fluidized beds
spinning disc reactor

Tools: CFD (single- and multiphase), transport equations, DEM, CFD/DEM, ...
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Stabilized incompressible Navier–Stokes solver
Stabilized Navier–Stokes equations: find u, p s.t. → allow equal order elements (QpQp)
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▶ monolithic approach with BDF2
▶ Newton’s method

▶ software: Lethe based on deal.II
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)
Ωk︸ ︷︷ ︸

PSPG

= 0 ∀v, q

▶ monolithic approach with BDF2
▶ Newton’s method
▶ software: Lethe based on deal.II

A. Alphonius, L. Barbeau, B. Blais, O. Gaboriault, O. Guévremont, J. Lamouche, P. Laurentin, O.
Marquis, PM, V. Oliveira Ferreira, Papillon-Laroche, H., P.A. Patience, L. Prieto Saavedra, and M.
Vaillant, 2025. Lethe 1.0: An Open-Source High-Performance and High-Order Computational Fluid
Dynamics Software for Single and Multiphase Flows. SSRN.
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Solution of linearized system

Resulting block structure of Jacobian:
▶ unstabilized:

J =

[
A B
C 0

] ▶ stabilized:

J ′ =
[

A′ B′

C′ D

]
Possible solution approaches (for unstabilized NS):
▶ block preconditioner based on block factorization, e.g., ... with S = D−CA−1B

J ≈
[
A B

S

]
▶ monolithic preconditioner: ILU, AMG, (geometric) multigrid with Vanka smoothers, ...

E.C. Cyr, J.N. Shadid, R.S. Tuminaro [’12]:
- comparison of monolithic AMG and block preconditioner for stabilized FEM
- observation: AMG is scalable, block prec. based on block factorization not easy to construct
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J ≈
[
A B

S

]
▶ monolithic preconditioner: ILU, AMG, (geometric) multigrid with Vanka smoothers, ...

E.C. Cyr, J.N. Shadid, R.S. Tuminaro [’12]:
- comparison of monolithic AMG and block preconditioner for stabilized FEM
- observation: AMG is scalable, block prec. based on block factorization not easy to construct

Scope of this presentation:

1. stabilized NS

2. monolithic geometric multigrid

3. locally refined meshes

4. using deal.II (and matrix-free evaluation)
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Part 2:

Multigrid in deal.II
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Multigrid types in deal.II

Solve the system of linear equations A(x) = b:
▶ presmoothing:

x ←S(x)

▶ recursive coarse-grid correction:

Ac(v) =R(b−A(x)) and x ← x +P(v)

▶ postsmoothing:

x ←S(x)

Geometry:

Fine grid

Coarse grid
Definition of the levels gives the multigrid type.
Multigrid in deal.II: AMG via PETSc/Trilinos, geometric, polynomial, non-nested multigrid︸ ︷︷ ︸

native

.
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Local mesh refinement

coarse grid “active” level

local refinement global refinement

hanging node - 3 levels
- 112 cells

- 16 cells

▶ at hanging nodes: maintain H1 regularity of the tentative solution (force solution
representation of refined side to be matching polynomial representation of coarse side)

▶ apply (hanging-node) constraints via xi = ∑j cijxj +bj (constraint matrix)
▶ hanging nodes are “motivation” for development of different geometric multigrid variants
▶ other variants: p- and hp-adaptivity (▷ Marc Fehling, Th 12:15—12:40)

Shephard, M.S., 1984. Linear multipoint constraints applied via transformation as part of a direct stiffness assembly process. IJNME.
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Local mesh refinement: local smoothing (LS)

64 cells 64 cells 16 cells

∑ =144 cells

edge

▶ internal interface/“edge”: (in)homogeneous DBC during pre-/postsmoothing
▶ uses refinement levels + first-child policy→ memory-efficient, efficient transfer
▶ smoothers designed for uniform meshes, e.g., patch smoothers, are applicable

Brandt, A. 1977. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation.
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Local mesh refinement: local smoothing (LS, cont.)

Janssen, B. and Kanschat, G., 2011. Adaptive multilevel methods with local smoothing for H1-and
Hcurl -conforming high order finite element methods. SIAM JSC.

Kronbichler, M. and Wall, W.A., 2018. A performance comparison of continuous and discontinuous
Galerkin methods with fast multigrid solvers. SISC.

Kronbichler, M. and Ljungkvist, K., 2019. Multigrid for matrix-free high-order finite element computa-
tions on graphics processors. ACM TOPC.

Clevenger, T.C. et. al., 2021. A flexible, parallel, adaptive geometric multigrid method for FEM. ACM
TOMS.
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Local mesh refinement: global coarsening (GC)

112 cells 28 cells 16 cells

∑=156 cells ≥ 144 cells

hanging node

▶ repartitioning of levels is common→ good load balance but potentially expensive
transfer

▶ smoothing: hanging-node constraints need to be considered; more cells

Becker, R. and Braack, M., 2000. Multigrid techniques for finite elements on locally refined meshes.
Numerical linear algebra with applications.

Becker, R., Braack, M. and Richter, T., 2007. Parallel multigrid on locally refined meshes. RFDT.
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Local mesh refinement (cont.)

PM, T. Heister, L. Prieto Saavedra, and M. Kronbichler, “Efficient distributed matrix-free multigrid
methods on locally refined meshes for FEM computations”, ACM TOPC, 2022.
▶ presents a unified multigrid framework with focus on (matrix-free) transfer operator

x(f ) = P(f ,c) ◦x(c) ↔ x(f ) = ∑
e∈{cells}

S(f )e ◦W(f )
e ◦P(f ,c)

e ◦C(c)e ◦G(c)e ◦x(c)

with:

C(c)e ◦G(c)e : gather values and apply constraints
P(f ,c)

e : prolongate on coarse cell (see figure)
W(f )

e : consider valence
S(f )e : add into x(f ) (coarse-side identification→ communication)

Q1

PM, K. Ljungkvist, and M. Kronbichler, M., 2022. Efficient application of hanging-node constraints for
matrix-free high-order FEM computations on CPU and GPU. ISC High Performance.
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Local mesh refinement (cont.)
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PM, K. Ljungkvist, and M. Kronbichler, M., 2022. Efficient application of hanging-node constraints for
matrix-free high-order FEM computations on CPU and GPU. ISC High Performance.

Research question:

1. Which is faster: GS or LS?

3. How many iterations do GS/LS need?

3. What is the bottleneck: smoothing vs. transfer?

4. Serial vs. parallel!?
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Local mesh refinement (cont.)

Solve 3D Poisson problem with constant right-hand-side function and DBC on:

octant L = 5 sphere L = 7
configuration:
▶ PCG with 1 V-cycle GMG

▶ relative tolerance: 10−4

▶ p = 1 and p = 4

▶ mixed precision (double, MG: float)

▶ coarse-grid solver: AMG via ML

▶ weight 2× of cell with hanging nodes
▶ smoother: Chebyshev iteration (degree 3) around a point-Jacobi method
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Local mesh refinement (cont.)

introduce geometric metrics (serial workload Ws, parallel workload Wp, parallel workload
efficiency ηw , vertical communication efficiency ηv )

1 process 192 processes
LS GC LS GC
Ws Ws Wp ηw ηv Wp ηw ηv

octant (L = 9) 1.9e+7 1.9e+7 1.6e+5 64% 99% 1.0e+5 98% 38%
sphere (L = 9) 2.5e+6 2.5e+6 3.5e+4 36% 99% 1.5e+4 93% 84%

and relate these to performance differences (Poisson problem; point Jacobi)

1 process 192 processes
LS GC LS GC

#i t[s] #i t[s] #i t[s] #i t[s]
octant (L = 9, p = 1) 4 2.2e+1 3 1.8e+1 4 2.3e-1 3 1.3e-1
sphere (L = 9, p = 1) 5 3.7e+0 4 4.3e+0 5 6.3e-2 4 3.5e-2

13/32



Local mesh refinement (cont.)

introduce geometric metrics (serial workload Ws, parallel workload Wp, parallel workload
efficiency ηw , vertical communication efficiency ηv )

1 process 192 processes
LS GC LS GC
Ws Ws Wp ηw ηv Wp ηw ηv

octant (L = 9) 1.9e+7 1.9e+7 1.6e+5 64% 99% 1.0e+5 98% 38%
sphere (L = 9) 2.5e+6 2.5e+6 3.5e+4 36% 99% 1.5e+4 93% 84%

and relate these to performance differences (Poisson problem; point Jacobi)

1 process 192 processes
LS GC LS GC

#i t[s] #i t[s] #i t[s] #i t[s]
octant (L = 9, p = 1) 4 2.2e+1 3 1.8e+1 4 2.3e-1 3 1.3e-1
sphere (L = 9, p = 1) 5 3.7e+0 4 4.3e+0 5 6.3e-2 4 3.5e-2

13/32



Local mesh refinement (cont.)

introduce geometric metrics (serial workload Ws, parallel workload Wp, parallel workload
efficiency ηw , vertical communication efficiency ηv )

1 process 192 processes
LS GC LS GC
Ws Ws Wp ηw ηv Wp ηw ηv

octant (L = 9) 1.9e+7 1.9e+7 1.6e+5 64% 99% 1.0e+5 98% 38%
sphere (L = 9) 2.5e+6 2.5e+6 3.5e+4 36% 99% 1.5e+4 93% 84%

and relate these to performance differences (Poisson problem; point Jacobi)

1 process 192 processes
LS GC LS GC

#i t[s] #i t[s] #i t[s] #i t[s]
octant (L = 9, p = 1) 4 2.2e+1 3 1.8e+1 4 2.3e-1 3 1.3e-1
sphere (L = 9, p = 1) 5 3.7e+0 4 4.3e+0 5 6.3e-2 4 3.5e-2

13/32



Local mesh refinement (cont.)
Workload and execution time per level, e.g., for octant (L = 8):
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Similar observations for large-scale simulations (150k processes) and variable viscosity
problems (block preconditioner)⇒What about stabilized NS? 14/32



Part 3:

Multigrid for the stabilized Navier–Stokes equations
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Solution strategy

Solve stabilized Navier–Stokes equations with a monolithic approach and the Jacobian of the
form

J =

[
A B
C D

]
.

Monolithic h-multigrid as preconditioner for GMRES:
▶ Smoother:

relaxation + inverse diagonal (× 5) or additive Schwarz method (element-centric, × 2)
▶ coarse-grid solver:

▶ AMG, ILU, direct solver + GMRES (optional)
▶ p-multigrid for higher-order elements

▶ locally refined meshes: local smoothing, global coarsening

L. Prieto Saavedra, PM, B. Blais, 2025, “A Matrix-Free Stabilized Solver for the Incompressible Navier-
Stokes Equations”, JCP.
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relaxation + inverse diagonal (× 5) or additive Schwarz method (element-centric, × 2)
▶ coarse-grid solver:

▶ AMG, ILU, direct solver + GMRES (optional)
▶ p-multigrid for higher-order elements

▶ locally refined meshes: local smoothing, global coarsening

L. Prieto Saavedra, PM, B. Blais, 2025, “A Matrix-Free Stabilized Solver for the Incompressible Navier-
Stokes Equations”, JCP.

Estimates of comp. costs:

1. stabilized NS operator ≈2× more expensive than
vector Laplace operator

2. ASM >100× more expensive than point diagonal

⇒ smoother dominates costs of a V-cycle
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Solution strategy

Solve stabilized Navier–Stokes equations with a monolithic approach and the Jacobian of the
form

J =

[
A B
C D

]
.

Monolithic h-multigrid as preconditioner for GMRES:

Benchmarks:
1. MMS (globally refined meshes, steady state)
2. Taylor–Couette flow (locally refined meshes, transient)
3. flow past a sphere (locally refined meshes, steady state)

Hardware:

▶ Niagara distributed memory cluster of the Digital Research Alliance of Canada; CPU: 2 sockets
with 20 Intel Skylake cores (2.4GHz, AVX512)

▶ workstation: 24 cores, Intel(R) Core(TM) i9-14900
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Globally refined meshes: results for steady-state simulations

MMS: We define u⃗ and p as follows:

u⃗ =

 sin2(πx)cos(πy)sin(πy)cos(πz)sin(πz)
cos(πx)sin(πx)sin2(πy)cos(πz)sin(πz)
−2cos(πx)sin(πx)cos(πy)sin(πy)sin2(πz)


p = sin(πx)sin(πy)sin(πz)

insert them into the Navier-Stokes equations and find the
appropriate source term f⃗ .

▶ steady-state
▶ domain: Ω= (−1,1)3

▶ zero Dirichlet boundary conditions
▶ QpQp elements with p = 1,2,3
▶ abs (n)/abs(l)/rel(l) tolerance: 10−8/−10/−4
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Globally refined meshes: results for steady-state simulations (cont.)

Number of iterations: −: not converged; ∗: out of memory

Q1Q1 Q2Q2 Q3Q3

ID ASM ID ASM ID ASM

ℓ NN NL NN NL NN NL NN NL NN NL NN NL

4 3 7.0 3 4.3 3 7.0 3 4.7 3 7.7 3 5.7

5 − − 3 5.0 3 7.7 3 5.0 3 8.3 3 6.0

6 − − 3 5.3 3 7.7 3 5.3 3 9.0 3 6.7

7 − − 3 6.0 3 8.7 3 5.3 3 9.3 3 6.7

8 − − 3 6.0 2 10.5 3 5.7 2 12.0 ⋆ ⋆

9 − − 2 7.5

Reference (AMG):

Q1Q1 Q2Q2 Q3Q3

ℓ NN NL ℓ NN NL ℓ NN NL

6 3 13.8 ± 5.2 7 3 12.8 ± 0.2 8 3 13.5 ± 1.2
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Globally refined meshes: results for steady-state simulations (cont.)
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Globally refined meshes: results for steady-state simulations (cont.)

Strong-scalability study on Niagara:
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Globally refined meshes: results for steady-state simulations (cont.)

Observations:
▶ geometric multigrid solver is faster than matrix-based AMG
▶ inverse diagonal works in many cases but not for all (e.g., Q1Q1)
▶ additive Schwarz method is more robust
▶ element-centric patches are enough & vertex-star patches are more expensive (reason:

non-zero D block?)

Comments on static flow past a sphere (1024 coarse-grid cells):
▶ similar observations
▶ for inverse diagonal, the quality of the coarse-grid solver is important

Comments on transient simulations, e.g., Taylor–Green vortex:
▶ inverse diagonal is enough

More details:
L. Prieto Saavedra, PM, B. Blais, 2025, “A Matrix-Free Stabilized Solver for the Incompressible Navier-
Stokes Equations”, JCP.
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Locally refined meshes

level 2 level 1 level 0

64 cells 64 cells 16 cells

112 cells 28 cells 16 cells

“active” level

global coarsening (GC):

local smoothing (LS):

refinement edge

hanging node

Local smoothing:
▶ Dirichlet BC both for u and p at refinement edges!?
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Locally refined meshes: Taylor–Couette flow
Complex turbulent flow problem:
▶ annular flow between two coaxial cylinders
▶ inner cylinder with a fixed angular velocity
▶ outer cylinder is static
▶ curved walls
▶ transient: BDF2, fixed CFL=1
▶ Re = 4000
▶ QpQp elements with p = 1,2
▶ static: global mesh refinement ℓ with one

additional refinement next to the walls
▶ simulation time: 60s
▶ abs (n)/abs(l)/rel(l) tolerance: 10−5/−7/−4

L. Prieto Saavedra, J. Archambault, PM, B. Blais, 2025, “An implicit large-eddy simulation study of the
turbulent Taylor-Couette flow with an inner rotating cylinder”, Journal of Turbulence.
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Locally refined meshes: Taylor–Couette flow (cont.)

Number of iterations and time T (with 12 cores on workstation):

Q1Q1

GC LS
l NT NN NL T NL T
2 72 2 4.71 6.47 7.02 7.97
3 152 2 4.01 84.5 5.03 84.5

Q2Q2

GC LS
l NT NN NL T NL T
2 149 2 4.49 79.8 5.36 88.2
3 308 1.95 3.73 745 3.87 753
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Locally refined meshes: Taylor–Couette flow (cont.)
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Locally refined meshes: Taylor–Couette flow (cont.)

Time of each multigrid level (l = 3, Q2Q2):
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Locally refined meshes: Taylor–Couette flow (cont.)

Strong-scaling study on Niagara:
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Observation: with increasing number of processes, the workload imbalance increases.
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Locally refined meshes: flow past a cylinder

Challenging external flow problem:
▶ fixed entrance velocity U∞ = 1
▶ steady-state, Re = 150. Initial condition:

ramp up Re starting with Re = 10
▶ no-slip boundary conditions around the

sphere and slip boundary conditions on
the wall

▶ QpQp elements with p = 1,2
▶ initial global refinement ℓ
▶ dynamic mesh refinement: using Kelly

error estimator on the pressure
▶ abs (n)/abs(l)/rel(l) tolerance: 10−5/−7/−4
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Locally refined meshes: flow past a cylinder (cont.)

Number of iterations and time T (with 12 cores on workstation; ramp up ignored):

Q1Q1

GC LS
l NN NL T NL T
1 5 14.6 7.36 15.2 7.14
2 4 23.25 37.4 23 43.7

Q2Q2

GC LS
l NN NL T NL T
1 4 14.75 28.2 14.75 34.1
2 2 23 162 23.5 206

27/32



Locally refined meshes: flow past a cylinder (cont.)

Number of iterations and time T (with 12 cores on workstation; ramp up ignored):

Q1Q1

GC LS
l NN NL T NL T
1 5 14.6 7.36 15.2 7.14
2 4 23.25 37.4 23 43.7

Q2Q2

GC LS
l NN NL T NL T
1 4 14.75 28.2 14.75 34.1
2 2 23 162 23.5 206

27/32



Locally refined meshes: flow past a cylinder (cont.)

Number of iterations and time T (with 12 cores on workstation; ramp up ignored):

Q1Q1

GC LS
l NN NL T NL T
1 5 14.6 7.36 15.2 7.14
2 4 23.25 37.4 23 43.7

Q2Q2

GC LS
l NN NL T NL T
1 4 14.75 28.2 14.75 34.1
2 2 23 162 23.5 206

27/32



Locally refined meshes: flow past a cylinder (cont.)

Time of each multigrid level (l = 2, Q2Q2):
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Part 4:

Conclusions & Outlook
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Conclusions & Outlook

Conclusions:
▶ matrix-free stabilized Navier–Stokes solver
▶ freely available: deal.II + Lethe CFD
▶ monolithic solution approach→ monolithic geometric multigrid
▶ transient simulations only require the diagonal for preconditioning
▶ steady state needs stronger smoothers, e.g., additive Schwarz smoother
▶ on locally refined meshes: both global coarsening and local smoothing is working

Outlook:
▶ improve efficiency of additive Schwarz smoother
▶ investigate influence of BC in local smoothing
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Conclusions & Outlook (cont.)

Observation: pure Dirichlet BC during local smoothing seems not to have a negative
influence.

Other fields:
▶ model refinement methods, e.g., Tominec, I., Ahlkrona, J. and Braack, M., 2025.

Well-posedness of the Stokes problem under modified pressure Dirichlet boundary
conditions. BIT Numerical Mathematics.

▶ domain decomposition, e.g., Cai, M. and Pavarino, L.F., 2016. Hybrid and multiplicative
overlapping Schwarz algorithms with standard coarse spaces for mixed linear elasticity
and Stokes problems. Communications in Computational Physics.
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Conclusions & Outlook (cont.)

Goal: to develop a fast and efficient multi-physics solver for process engineering
▶ mortar FEM

▶ volume-averaged Navier—Stokes⇒ unresolved CFD-DEM

▶ non-Newtonian fluid
▶ reactive flows
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