
deal.II: challenges and opportunities of
developing an open-source FEM library

Swedish e-Science Academy 2025
Satellite: Common challenges in large-scale code development

Peter Munch†

†Institute of Mathematics, Technical University of Berlin, Germany

16. October, 2025

Overview

▷ FEM library; C++
▷ origin in Heidelberg 1998; 3 developers

▷ 13 principal developers; 418+ contributors
▷ approx. 2,700 publications

▷ free (transition to Apache-2.0 with LLVM-exception)
▷ extensive docu & approx. 90 tutorials

open-source application codes

ASPECT

+DFT-FE, OpenFCST, lifex, ...

About myself: postdoctoral researcher at TU Berlin (2024–, before: Uppsala University),
deal.II principal developer (2020–)

Questions to be answered in this presentation:
▶ Who are the library developing? How do they work? Which resources are used?
▶ Who are the users? How do the developers interact with them?
▶ What are challenges/opportunities of developing an open-source library (in academia)?

Peter Munch (TU Berlin) 1/52

Part 1:

deal.II: introduction

Peter Munch (TU Berlin) 2/52

Introduction

▶ deal.II1: mathematical software for finite-element analysis, written in C++
▶ origin in Heidelberg 1998: Wolfgang Bangerth, Ralf Hartmann, Guido Kanschat
▶ 418+ contributors + principal developer team with 13 active members
▶ more than 2,700 publications (on and with deal.II)
▶ freely available under Apache-2.0 with LLVM-exception or LGPL-2.1-or-later
▶ yearly releases; current release: 9.7
▶ features comprise (supported by third-party libraries): matrix-free implementations,

parallelization (MPI, threading via TBB & Taskflow, SIMD, GPU support), discontinuous
Galerkin methods, AMR via p4est, particles, wrappers for PETSc and Trilinos, ...

▶ similar libraries: e.g.,
MFEM, DUNE, FEniCS, libMesh, ...

1successor of DEAL: Differential Equations Analysis Library
Peter Munch (TU Berlin) 3/52

Main modules

needed from a FEM library:
▶ mesh handling
▶ finite elements
▶ quadrature rules
▶ mapping rules
▶ assembly procedure
▶ linear solver

deal.II main modules →

Manifold GridIn GridOut

DataOut

PETSc/Trilinos

Mapping Quadrature Finite Element Triangulation

FEValues DoFHandlerDoFHandler

Linear systems

Linear solvers

Graphical output

element stiffness matrix

Peter Munch (TU Berlin) 4/52

Main modules (cont.)
const unsigned int dim = 2, degree = 3;

parallel::distributed::Triangulation<dim> tria(MPI_COMM_WORLD);
util::create_reentrant_corner(tria);

FE_Q<dim> fe(degree);
QGauss<dim> quad(degree + 1);
MappingQGeneric<dim> mapping(1);

DoFHandler<dim> dof_handler(tria);
dof_handler.distribute_dofs(fe);

// deal with boundary conditions
AffineConstraints<double> constraints;
VectorTools::interpolate_boundary_values(mapping, dof_handler, 0,

Functions::ZeroFunction<dim>(), constraints);
constraints.close();

// initialize vectors and system matrix
LinearAlgebra::distributed::Vector<double> x, b;
TrilinosWrappers::SparseMatrix A;
util::initialize_dof_vector(dof_handler, x); util::initialize_dof_vector(dof_handler, b);
util::initialize_system_matrix(dof_handler, constraints, A);

// assemble right-hand side and system matrix
FullMatrix<double> cell_matrix;
Vector<double> cell_rhs;
std::vector<types::global_dof_index> local_dof_indices;

FEValues<dim> fe_values(mapping, fe, quad, update_values | update_gradients | update_JxW_values);

Manifold GridIn GridOut

DataOut

PETSc/Trilinos

Mapping Quadrature Finite Element Triangulation

FEValues DoFHandlerDoFHandler

Linear systems

Linear solvers

Graphical output

element stiffness matrix

∑
q
(∇Niq, ∇Njq) · |Jq|×wq, ∑

q
(Niq, f) · |Jq|×wq

Peter Munch (TU Berlin) 5/52

Main modules (cont.)

for (const auto &cell : dof_handler.active_cell_iterators()) // loop over all locally-owned cells
{

if (cell->is_locally_owned() == false) continue;
fe_values.reinit(cell);

const auto dofs_per_cell = cell->get_fe().n_dofs_per_cell(); // allocate memory for element matrix/vector
cell_matrix.reinit(dofs_per_cell, dofs_per_cell); //
cell_rhs.reinit(dofs_per_cell); //

for (const auto q : fe_values.quadrature_point_indices()) // compute element matrix/vector
for (const auto i : fe_values.dof_indices()) //

for (const auto j : fe_values.dof_indices()) //
cell_matrix(i, j) += (fe_values.shape_grad(i, q) * //

fe_values.shape_grad(j, q) * //
fe_values.JxW(q)); //

//
for (const auto q : fe_values.quadrature_point_indices()) //

for (const auto i : fe_values.dof_indices()) //
cell_rhs(i) += (fe_values.shape_value(i, q) * //

1. * //
fe_values.JxW(q)); //

local_dof_indices.resize(cell->get_fe().dofs_per_cell); // assembly
cell->get_dof_indices(local_dof_indices); //
constraints.distribute_local_to_global(cell_matrix, cell_rhs, local_dof_indices, A, b); //

} //
//

b.compress(VectorOperation::add); A.compress(VectorOperation::add); //

∑
q
(∇Niq, ∇Njq) · |Jq|×wq → K(e)

ij

∑
q
(Niq, f) · |Jq|×wq → f(e)i

A
e

K(e),A
e

f(e)

Peter Munch (TU Berlin) 6/52

Main modules (cont.)

// solve linear equation system
ReductionControl reduction_control;
SolverCG<LinearAlgebra::distributed::Vector<double>> solver(reduction_control);
solver.solve(A, x, b, PreconditionIdentity());

if (Utilities::MPI::this_mpi_process(util::get_mpi_comm(tria)) == 0)
printf("Solved in %d iterations.\n", reduction_control.last_step());

constraints.distribute(x);

// output results (e.g. VTK, VTU, Tecplot, HDF5, svg, gnuplot, ...)
DataOutBase::VtkFlags flags;
flags.write_higher_order_cells = true;

DataOut<dim> data_out;
data_out.set_flags(flags);
data_out.attach_dof_handler(dof_handler);
x.update_ghost_values();
data_out.add_data_vector(dof_handler, x, "solution");
data_out.build_patches(mapping, degree + 1);
data_out.write_vtu_with_pvtu_record("./", "result", 0, MPI_COMM_WORLD);

Full code: https://github.com/peterrum/dealii-examples/blob/master/poisson.cc

Kx = f → x = K−1f

Manifold GridIn GridOut

DataOut

PETSc/Trilinos

Mapping Quadrature Finite Element Triangulation

FEValues DoFHandlerDoFHandler

Linear systems

Linear solvers

Graphical output

element stiffness matrix

Peter Munch (TU Berlin) 7/52

https://github.com/peterrum/dealii-examples/blob/master/poisson.cc

Active development

▶ yearly release (current release: 9.7)
▶ major additions in the last years, e.g., particles,

simplex meshes non-nested multigrid CutFEM

... and 24 new tutorials over the last 5 years
▶ each release is accompanied by a release paper (mostly in Journal of Numerical

Mathematics)
Peter Munch (TU Berlin) 8/52

Successful?
Winner of “SIAM/ACM Prize in Computational Science and Engineering 2025”

Peter Munch (TU Berlin) 9/52

Successful?
Winner of “SIAM/ACM Prize in Computational Science and Engineering 2025”

Wolfgang Bangerth’s acceptance speech [1]

Peter Munch (TU Berlin) 9/52

https://youtu.be/Dv2MOoNn7Z0?si=w9bed32jWPCK-meY

Successful?
Winner of “SIAM/ACM Prize in Computational Science and Engineering 2025”

Wolfgang Bangerth’s acceptance speech [1], SIAM News Blog [2].

Peter Munch (TU Berlin) 9/52

https://youtu.be/Dv2MOoNn7Z0?si=w9bed32jWPCK-meY
https://www.siam.org/publications/siam-news/articles/supporting-computational-science-and-engineering-the-creation-of-widely-used-software-in-industrial-and-applied-mathematics/

Part 2:

Distributed development: resources

Peter Munch (TU Berlin) 10/52

Official webpage

... www.dealii.org
Peter Munch (TU Berlin) 11/52

Documentation

Extensive Doxygen documentation GitHub Wiki

Peter Munch (TU Berlin) 12/52

Documentation (cont.)

87 tutorials and code gallery:

... further 10 tutorials: work in progress
Peter Munch (TU Berlin) 13/52

Documentation (cont.)

Example (step-87):

Peter Munch (TU Berlin) 14/52

Forum

deal.II user group:

... Q&A by users and developers!
Peter Munch (TU Berlin) 15/52

Development on GitHub

▶ issues
▶ pull requests
▶ GitHub actions → CI
▶ required: approval by ≥ 1

principal developer

Peter Munch (TU Berlin) 16/52

Continuous integration

... more than 17,000 tests run for different compilers/hardware/configurations

Peter Munch (TU Berlin) 17/52

Part 3:

Distributed development: users and developers

Peter Munch (TU Berlin) 18/52

User and developer base

indirect users

direct users
co

ntributors

dev.

▶ deal.II has a large body of developers
and users

▶ this includes Master students, PhD
students, researchers (academia,
research centers), industry

▶ background: Mathematics, Computer
Science, Engineering, ...

▶ location: Europe, China, USA, Canada,
India, ...

Peter Munch (TU Berlin) 19/52

User and developer base: principal developers

indirect users

direct users
co

ntributors

dev.

▶ team of 13 principal developers
▶ know a significant fraction of the library
▶ review and merge PRs
▶ answer questions/issues
▶ responsible for infrastructure/testing
▶ organization of workshops
▶ not payed for work on deal.II
▶ discussion via GitHub/Element
▶ regular Zoom meetings

Peter Munch (TU Berlin) 20/52

User and developer base: principal developers (cont.)

Developers emeriti: Denis Davydov (2015-2020), Ralf Hartmann (1998-2012), Guido Kanschat (1997-2022),

Toby D. Young (2013-2017)
Peter Munch (TU Berlin) 21/52

User and developer base: principal developers (cont.)

▶ Daniel Arndt, Oak Ridge National Laboratory, TN, USA (since 2016)

▶ Wolfgang Bangerth, Colorado State University, CO, USA (since 1997)

▶ Bruno Blais, Polytechnique Montréal, Canada (since 2023)

▶ Marc Fehling, Charles University, Czech Republic (since 2021)

▶ Rene Gassmoeller, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany (since 2023)

▶ Timo Heister, Clemson University, SC, USA (since 2012)

▶ Luca Heltai, University of Pisa, Italy (since 2013)

▶ Martin Kronbichler, Ruhr University Bochum, Germany (since 2013)

▶ Matthias Maier, Texas A&M University, College Station, TX, USA (since 2013)

▶ Peter Munch, Technical University of Berlin, Germany (since 2020)

▶ Jean-Paul Pelteret, industry, Germany (since 2016)

▶ Bruno Turcksin, Oak Ridge National Laboratory, TN, USA (since 2013)

▶ David Wells University of North Carolina, Chapel Hill, NC, USA (since 2015)

Summary: PhD students (0) vs. postdocs (7) vs. professors (6), Europe (6) vs. USA/Canada (7),
male (13) vs. female (0), academia (9) vs. research centers (3) vs. industry (1), math (7) vs non-math (6)

Peter Munch (TU Berlin) 22/52

User and developer base: contributors

indirect users

direct users
co

ntributors

dev.

▶ use deal.II extensively
▶ read/write deal.II code
▶ contribute: bug fixes, fixes in

documentation, features
▶ total: 418+
▶ last release: 88 contributors
▶ award: co-author of release paper

Peter Munch (TU Berlin) 23/52

User and developer base: users

indirect users

direct users

co
ntributors

dev.

indirect users

direct users

co
ntributors

dev.

▶ write applications using deal.II
▶ use documentation
▶ potentially start from a tutorial
▶ interaction via google group

▶ use application/libraries using deal.II
(e.g., ASPECT for geosciences)

▶ rare interaction
▶ citation

Peter Munch (TU Berlin) 24/52

Publications

Number of publications (total: 2746) gives an indication of number of users:

... gray bars: incomplete data

Peter Munch (TU Berlin) 25/52

Workshops

(Yearly) workshops:

Fort Collins, Colorado, USA, 2024

+ get-together at workshops
Peter Munch (TU Berlin) 26/52

Workshops (cont.)

Best deal.II-based paper award:

2023: Computer Methods in Applied Mechanics and Engineering

2024: Journal of Fluid Mechanics
Peter Munch (TU Berlin) 27/52

Becoming more involved

indirect users

direct users
co

ntributors

dev.

Typical path:
▶ start to use deal.II (as student)
▶ contribute a lot
▶ become co-author of release paper
▶ contribute much more and be active in

the community
▶ become principal developer

Peter Munch (TU Berlin) 28/52

About myself

First project using deal.II (2019, student project): Vlasov equation (comp. plasma physics):

∂ f
∂ t

+v ·∇x f +a(t , f ,x ,v) ·∇v f = 0 w. a(t , f ,x ,v) =−E(t ,x) (Poisson problem)

Derivative in phase (v -)space implies high-dimensional nonlinear advection equation.

Approach: high-order discontinuous Galerkin method up to 6D

Challenges:
▶ mesh generation (open-source packages only support 1D-3D)
▶ performance: large working sets, communication pattern/data curse of dimensionality �
▶ Munch, P., Kormann, K. and Kronbichler, M., 2021. hyper. deal: An efficient, matrix-free

finite-element library for high-dimensional partial differential equations. ACM TOMS.
Peter Munch (TU Berlin) 29/52

About myself (cont.)
Since 2020 (beginning of second year of PhD), one of the principal developers of deal.II

Projects in deal.II:
▶ simplex/mixed-mesh support

▶ (global-coarsening) multigrid
▶ hp-adaptivity, non-matching algorithms
▶ (fully) distributed triangulation (project 2)
▶ large-scale computations → consensus

algorithm (project 1)
▶ performance optimization, e.g.,

matrix-free algorithms

Projects using deal.II:
▶ solid-state sintering

▶ additive manufacturing

▶ stage-parallel IRK and space-time FEM
▶ Galerkin difference methods
▶ direct solversPeter Munch (TU Berlin) 30/52

About myself (cont.)

Weak form of (stabilized) incompressible Navier–Stokes equations:

(∂tu, v)+
(
u·∇u, v

)
−
(
p, ∇·v

)
+
(
νε(u), ε(v)

)
+δ1

(
∂tu+u·∇u+∇p−ν∆u, u ·∇v

)
+δ2

(
∇·u, ∇·v

)
= 0,(

∇·u, q)+δ1
(
∂tu+u·∇u+∇p−ν∆u, ∇q

)
= 0

Solve with BDF2/ST and Newton–Krylov method with Jacobian:

J =

[
A BT

C D

]
→ J ′ =

[
A BT

0 S

]
→ (monolithic) multigrid

Interests:
– preconditioning
– multiphysics
– performance
– hp-adaptivity
– open-source dev.: deal.II, Lethe

Compressible NS (+reaction, cut)

U t +∇ · (Fa(U)+Fv (U)) = G(U)

Peter Munch (TU Berlin) 31/52

Part 4:

Challenges

Peter Munch (TU Berlin) 32/52

1 Backwards compatibility

▶ during development, mistakes are made
▶ correcting them if they are user-visible is not that easy

Example:
▶ old interface:

template <int dim, int spacedim>
void
extract_locally_active_dofs(const DoFHandler<dim, spacedim> &dof_handler,

IndexSet &dof_set);

▶ new interface:

template <int dim, int spacedim>
IndexSet
extract_locally_active_dofs(const DoFHandler<dim, spacedim> &dof_handler);

Peter Munch (TU Berlin) 33/52

1 Backwards compatibility (cont.)

Solution: deprecation warnings

template <int dim, int spacedim>
DEAL_II_DEPRECATED void
extract_locally_active_dofs(const DoFHandler<dim, spacedim> &dof_handler,

IndexSet &dof_set);

▶ preprocessing macro
▶ deprecation takes 2 years: early deprecation → deprecation
▶ macros can be disabled
▶ user experience: “New warning/incompatibility after each update of deal.II!”

Peter Munch (TU Berlin) 34/52

2 Keeping up to date: new compilers

▶ support newest versions of GCC, ICC, Clang
▶ keep supporting old versions since not everyone has access to the newest versions
▶ tested versions

▶ GCC: 9.4.0 (Ubuntu 20.04 LTS), 10.2.1, 10.4.1, 11.3.1, 11.4.0, 12.2.0, 12.2.1, 13.1.1,
13.3.0, 14.2.0, 14.2.1, 15.1.0, ...

▶ Clang: 13.0.1, 14.0.6, 15.0.6, 16.0.6, 17.0.6, 18.1.8, 19.1.6, 19.1.7, 20.1.7, 21.1.7, ...

▶ goal: no warnings!

Peter Munch (TU Berlin) 35/52

2 Keeping up to date: new versions of C++

▶ we want to use/support newest versions of the C++ standard
▶ however, many used compilers do not support current features; requirement: C++17

Solutions:
▶ check C++ version during configuration
▶ provide own implementations

#ifndef DEAL_II_HAVE_CXX20
template <typename T, typename B>
using iota_view = boost::integer_range<T>;

#else
using std::ranges::iota_view;

#endif

▶ modules (C++20) supported!
template <int dim, int spacedim>
DEAL_II_CXX20_REQUIRES((concepts::is_valid_dim_spacedim<dim, spacedim>))
class Triangulation;

Peter Munch (TU Berlin) 36/52

2 Keeping up to date: external libraries

The interfaces of external libraries change over time, and features are added/removed.

Solution: check version during configuration and use preprocessing macros.

Example:

DEAL_II_WITH_PETSC set up with external dependencies
PETSC_VERSION = 3.18.6.
PETSC_DIR = /homes/numerik/muench/store/sw-candi/petsc-3.18.6

#if DEAL_II_PETSC_VERSION_LT(3, 8, 0)
ierr = MatTranspose(tmp, MAT_REUSE_MATRIX, &tmp);

#else
ierr = MatTranspose(tmp, MAT_INPLACE_MATRIX, &tmp);

#endif

Peter Munch (TU Berlin) 37/52

2 Keeping up to date: new hardware architecture

To support different CPU architectures, large part of the library does not use double/float
directly but wraps them in structs:

double float ISA

VectorizedArray<double, 1> VectorizedArray<float, 1> (auto-vectorization)
VectorizedArray<double, 2> VectorizedArray<float, 4> SSE2/AltiVec/ARM NEON
VectorizedArray<double, 4> VectorizedArray<float, 8> AVX/AVX2
VectorizedArray<double, 8> VectorizedArray<float, 16> AVX-512

Use cases: vectorization over cells and quadrature points

With C++23, we will be able to replace (hopefully) our own implementation!

VectorizedArray (deal.II) std::simd (C++23)

VectorizedArray<Number> std::experimental::native simd<Number>
VectorizedArray<Number, size> std::experimental::fixed size simd<Number, size>

Support of mixed precision, e.g., double-float in geometric multigrid.

What about GPUs?Peter Munch (TU Berlin) 38/52

3 Development by PhD students

Many features of deal.II are developed by PhD students/early-carrier researchers:
▶ distributed meshes → Timo Heister (2011, Göttingen)
▶ matrix-free operator evaluation → Martin Kronbichler (2012, Uppsala)
▶ matrix-free operator evaluation on the GPU → Karl Ljungkvist (2014, Uppsala)
▶ distributed hp-adaptive computation → Marc Fehling (2019, Jülich)
▶ simplex/mixed-mesh support → Peter Munch (2021, Geesthacht)

Observations:
▶ projects are continued as postdoctoral researchers/professors
▶ projects are continued by new PhD students
▶ maintenance by others
▶ but ...

Peter Munch (TU Berlin) 39/52

3 Development by PhD students (cont.)

Karl Ljungkvist (Uppsala University) has implemented matrix-free operator evaluation on the
GPU during his PhD. At that time, state-of-the-art implementation.

▶ Ljungkvist, K., 2014. Matrix-free finite-element operator application on graphics processing
units. In European Conference on Parallel Processing (pp. 450-461). Cham: Springer
International Publishing. 16 citations.

▶ Ljungkvist, K., 2017. Matrix-free finite-element computations on graphics processors with
adaptively refined unstructured meshes. In Proceedings of the 25th High Performance
Computing Symposium (pp. 1-12). 38 citations.

▶ Ljungkvist, K. and Kronbichler, M., 2017. Multigrid for matrix-free finite element computations
on graphics processors. 11 citations.

▶ Kronbichler, M. and Ljungkvist, K., 2019. Multigrid for matrix-free high-order finite element
computations on graphics processors. ACM TOPC. 97 citations.

▶ Munch, P., Ljungkvist, K. and Kronbichler, M., 2022. Efficient application of hanging-node
constraints for matrix-free high-order FEM computations on CPU and GPU. ISC. 7 citations.

Peter Munch (TU Berlin) 40/52

3 Development by PhD students (cont.)

After the PhD was concluded, the development of GPU features in deal.II stalled. Others
group have not rested, e.g., NEKO, libCEED, MFEM, NekRK, GALÆXI, ...

Developments:
▶ port Karl Ljungkvist’s code to master
▶ new tutorial: step-64
▶ replacing CUDA backend by Kokkos
▶ overintegration and vectorial elements
▶ example codes deal.II + libCEED (BP1–BP6 supported)2

2https://github.com/CEED/libCEED/tree/main/examples/deal.II
Peter Munch (TU Berlin) 41/52

https://github.com/CEED/libCEED/tree/main/examples/deal.II

4 Feature requests

Most requested features of deal.II:
▶ simplex/mixed-mesh support
▶ Python wrappers

Peter Munch (TU Berlin) 42/52

4 Feature requests (cont.)

Most requested features of deal.II:
▶ simplex/mixed-mesh support ✓
▶ Python wrappers

Addition simplex/mixed mesh support:
▶ running gag for a long time

▶ available since 2021
▶ added by PM, financially backed by Helmholtz-Zentrum Hereon, Germany
▶ hesitation: long-time maintenance & incomplete feature

Peter Munch (TU Berlin) 43/52

4 Feature requests (cont.)

Most requested features of deal.II:
▶ simplex/mixed-mesh support
▶ Python wrappers ✗

Python wrappers:
▶ basic implementation of Python bindings for geometry generation/manipulation

import PyDealII.Release as dealii
triangulation = dealii.Triangulation(dim = '2D')
triangulation.read(filename = 'example.msh', format = 'msh')

▶ no bindings for the rest of the library; challenge template arguments?
▶ observation: C++ difficult for starting when you are used to Python/MATLAB
▶ in contrast to: FEniCS, Firedrake, Dune, MFEM, libCEED, ...
▶ no interest/no financial support/no (scientific) motivation since no new innovation

Peter Munch (TU Berlin) 44/52

5 Diversity

Visualization of men/women distribution:

indirect users

direct users

co
ntributors

dev.

Observation:
▶ the developer team of deal.II is highly uniform: 13 men!
▶ however, large fraction of users are women!

Challenge/question: how can we improve?
Peter Munch (TU Berlin) 45/52

6 Artificial intelligence

▶ LLMs are trained on open-source code projects
▶ i.e., can be used to assist in writing code
▶ an early example (ChatGPT ↔ deal.II) is given by G.

Orlando in 2023

Peter Munch (TU Berlin) 46/52

7 (Under)Appreciation

Is software development (under)appreciated ...
▶ by the community? which community?
▶ by funding agencies?
▶ by journal publishers?
▶ by hiring committees?

How much time/effort can we spent on developing software?

Peter Munch (TU Berlin) 47/52

Part 5:

Opportunities

Peter Munch (TU Berlin) 48/52

For users

▶ rely on maintained, optimized, well-documented code
▶ one can concentrate on scientific questions without having to reimplement FEM
▶ benchmark codes can be published to allow reproducibility

Peter Munch (TU Berlin) 49/52

For contributors/developers

▶ good for the CV (contribution to a big open-source project, visible)
▶ meet and interact with interesting people
▶ learn research software engineering as a side project
▶ developed features are tested (+ reviewed and as such have high quality), further

developed (also by others), maintained, used (also in contexts where the original
developer did not imagine)

▶ fun

Peter Munch (TU Berlin) 50/52

Part 6:

Conclusions

Peter Munch (TU Berlin) 51/52

Conclusions

▶ deal.II is an open-source finite-element library written in C++
▶ well-documented and public development on GitHub
▶ developer team and active user community
▶ opportunities overweigh challenges (e.g., maintenance burden)

Peter Munch (TU Berlin) 52/52

	deal.II: introduction
	Distributed development: resources
	Distributed development: users and developers
	Challenges
	Opportunities
	Conclusions

